
Previous Year CBSE Problems with Solutions

Problem 1:

2. Maximise z = 8x + 9y subject to the constraints given below: $2x + 3y \le 6$, $3x - 2y \le 6$, $y \le 1$; $x, y \ge 0$ (Foreign 2015) (6 Marks)

Solution:

2. Let
$$l_1 : 2x + 3y = 6$$
, $l_2 : 3x - 2y = 6$, $l_3 : y = 1$;
 $x = 0, y = 0$

Solving $l_1 \otimes l_3$, we get D (1.5, 1) Solving $l_1 \otimes l_2$, we get $C\left(\frac{30}{13}, \frac{6}{13}\right)$

Shaded portion OADCB is the feasible region, where coordinates of the corner points are O(0, 0), A(0, 1)

$$D(1.5, 1), C\left(\frac{30}{13}, \frac{6}{13}\right), B(2, 0).$$

The value of the objective function at these points are :

Corner Points	Value of the objective function z = 8x + 9y
O (0, 0)	$8 \times 0 + 9 \times 0 = 0$
A (0, 1)	$8 \times 0 + 9 \times 1 = 9$
D (1.5, 1)	$8 \times 1.5 + 9 \times 1 = 21$
$C\left(\frac{30}{13},\frac{6}{13}\right)$	$8 \times \frac{30}{13} + 9 \times \frac{6}{13} = 22.6$ (Maximum)
B (2, 0)	$8 \times 2 + 9 \times 0 = 16$

The maximum value of *z* is 22.6, which is at $C\left(\frac{30}{6}, \frac{6}{6}\right)$

$$C\left(\overline{13},\overline{13}\right)$$